High Voltage PCB Design: Creepage and Clearance Distance
High voltage applications require more rigorous design parameters than your average PCB.
When I was an undergrad, I did a lot of electrochemical etching. I put it on my resume for years, because interviewers were always interested in hearing about working with high voltage sources and terrifying chemicals.
That was when I started looking into high voltage design. I was amazed by the standards that are required for high voltage products. I was also relieved. While I can’t prevent grad students from McGyvering our high voltage products, I do have peace of mind knowing that there is board level protection in place.
When does safety require specific spacing rules?
Not every PCB design has the same rigorous rules on spacing that a high-voltage PCB design needs. In general, if the normal operating voltage of your product meets or exceeds 30 VAC or 60 VDC, then you should be very diligent about spacing rules in your high voltage PCB design. If you have a high-density board, especially with high voltages, you need to be even more concerned. PCB trace spacing requirements already help prevent signal integrity problems, but they are also important to prevent arc discharge. The high density makes spacing much trickier, and even more important for protection.
Spacing is more important in high voltage PCB design rules because a potential difference between conductive elements on a board can create an arc if the voltage between the conductors exceeds the breakdown voltage. Any arc that does occur poses a significantly higher risk to both the product and your users. To help mitigate that risk, there are standards for two primary spacing measurements in your PCB design: clearance and creepage distance.
When the voltage between two points overcomes the breakdown voltage, arcing can occur, damaging your product creating a safety hazard for users. Spacing on your board is a critical design parameter for preventing arcing.
Creepage vs. Clearance
Both of these terms are used to define distances between conductors in a PCB layout and are specified in safety standards. Creepage and clearance are defined as the spacing between two neighboring conductors, although they are defined in two different ways.
What is Clearance on a PCB?
Clearance is the shortest distance through air between two conductors. I remember its definition by thinking of overhead clearance; how much room in the air before my head whacks into something. If the clearance anywhere on a PCB is too small, then an over-voltage event can cause an arc between neighboring conductive elements on the board.
The PCB layout rules for clearance vary with the material, voltage, and environmental conditions. The environmental effects are pretty significant. Most commonly, humidity changes the breakdown voltage of air and affects the likelihood of arcing. Dust is another factor, since particulates that collect on the surface of the PCB can form a track over time, shortening the distance between conductors.
What is Creepage on a PCB?
Similar to clearance, creepage measures distance between conductors on for high voltage PCB. However, instead of measuring distance in air, it measures the shortest distance along the surface of the insulation material. Board material and environment also affect creepage requirements. Moisture or particulate accumulation on the board can shorten creepage distance the same way they do for clearance.
When you have a high density printed circuit board design, creepage can be a difficult requirement to meet. Since moving tracks is rarely the first choice, there are a couple other tricks for increasing the surface distance in your design. By adding either a slot between tracks, or a vertical barrier of insulation, you can significantly increase the creepage distance without changing the trace layout on the board.
Creepage vs. clearance in a PCB. The red line shows the PCB creepage distance between two traces.
Consider comparative tracking index (CTI) of your material
After operating voltage, the most significant factor in the clearance and creepage requirements for a printed circuit board comes from the material properties of your PCB. The electrical insulation of the material is indicated by a “Comparative Tracking Index” or CTI value. The CTI is expressed as a voltage and is determined by a standardized test measuring when the surface of the material breaks down.
There are six categories from 0 to 5 based on the breakdown value of the material. The mandatory insulation levels for products are based on these CTI categories. Category 5 is the lowest, with values less than 100 V. With breakdowns of 600+ V, Category 0 has the most robust, and often expensive, material options.
PCB insulator materials have different breakdown voltages and corresponding safety categories for product applications.
How Do I Know What Material and Spacing to Use?
Because there are so many variables in high voltage PCB layout and material selection, your best bet for meeting the safety requirements and standards is to go directly to the source. There are two standards surrounding PCB breakdown voltage I see referenced most often.
IPC-2221 Voltage and Spacing Standards
The first important high voltage clearance and design standard is IPC-2221, which is the generic standard for guidance on PCB creepage and clearance. This standard is full of requirements on material quality, traceability, layout guidelines to ensure quality, and much more. You can also use a high voltage clearance calculator based on the IPC-2221 standards to determine the minimum spacing you should use for your PCB.
IEC-60950-1 (2nd edition)
The second important standard is IEC-60950-1 (2nd edition). The IEC version is the standard you want to read for any IT products with AC main or battery power supply, especially if you want to sell those products internationally. These standards specify safety requirements on everything from office shredders to telecommunications equipment.
Since the consequences of incorrect spacing vary from legal non-compliance to serious injury and destruction of important equipment, it’s well worth the time to become acquainted with any standards that are relevant to your design. Plus, it keeps the undergrads from zapping themselves.
Identifying and incorporating the standards can be time-consuming, so you should use a good design software. The best software for PCB design lets you create specific design rules and helps you identify issues early in the process. Altium Designer® fits these requirements and more; you can get started designing even before you’ve chosen your board insulating material!
Have a question about creepage and clearance distances? Contact an expert at Altium Designer.